
1 Running Qs on the FBS GNU/Linux cluster

This document is intended to be a short how-to guide to aid running Qs on the FBS
cluster. It can not be used as a substitute for the main documentation. Running Qs
on the cluster is pretty-much straightforward with one very significant exception :
the current parallel version of Qs does not scale well to more than 5-15 processors.
The implication is that if you lightheartedly start a parallel job utilising, say,
120 processors, Qs will most probably run slower than it would run on a stand-alone
machine.

In summary the plan for running Qs on the cluster is :
* Determine ’best’ number of processors to be used for the given problem.
* Submit as many independent jobs as the number of minimisations you want to perform.

If, for example, you found that the best number of processes for your problem is 9
(corresponding to a scale-up of, say, 6.0) and you want to perform 5 minimisations,
then you could submit 5 jobs (each occupying 9 processors) and you would expect
your calculations to finish in 1/30th of the time they would have taken on a single
processor.

2 ’Best’ number of processors : what to expect

The best number of processors for any given problem depends mainly on two
parameters : the number of unique reflections and the number of crystallographic
symmetry operators (for the given space group). In general, the program will
perform better as the number of unique reflections decreases and the symmetry
increases. To get an idea of what to expect for your problem, I wasted some of
FBS’s CPU time to run a few tests with problems of different sizes. In all cases,
I used short runs (200,000 steps each) and I assumed that the machines were
otherwise idle. The results are shown below (wallclock times in seconds, some graphs
are shown twice to aid comparison) :

9383 reflections, P422 :

Processors Wallclock Scale-up
1 8421 1.0
2 4733 1.7792
3 3464 2.4310
4 2723 3.0925
5 2315 3.6375
6 2021 4.1667
7 1792 4.6992
8 1644 5.1222
9 1516 5.5547

10 1466 5.7442
12 1553 5.4224

0 5 10
Number of processors

0

1

2

3

4

5

6

Sc
al

e−
up

1

18698 reflections, P422 :

Processors Wallclock Scale-up
1 15396 1.0
2 8888 1.7322
3 6311 2.4395
4 4967 3.0996
5 4297 3.5829
6 3696 4.1655
7 3466 4.4420
8 3418 4.5043
9 3625 4.2471

10 3656 4.2111

0 2 4 6 8 10
Number of processors

0

1

2

3

4

5

Sc
al

e−
up

4692 reflections, P422 :

Processors Wallclock Scale-up
1 4909 1.0
2 2427 1.9636
3 1850 2.6535
4 1474 3.3303
5 1236 3.9716
6 1069 4.5921
7 959 5.1188
8 867 5.6620
9 792 6.1982

10 743 6.6069
11 700 7.0128
12 661 7.4266
13 636 7.7185
14 598 8.2090
15 574 8.5522
16 558 8.7974
17 541 9.0739
18 526 9.3326
19 512 9.5878
20 499 9.8376
22 483 10.1635
24 469 10.4669
40 399 12.3032

0 10 20 30 40
Number of processors

0

5

10

15

Sc
al

e−
up

2

18698 reflections, P21 :

Processors Wallclock Scale-up
1 4405 1.0
2 2780 1.5845
4 1906 2.3111
6 2181 2.0197

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

9383 reflections, P21 :

Processors Wallclock Scale-up
1 2386 1.0
2 1510 1.5801
3 1218 1.9589
4 1039 2.2964
5 922 2.5878
6 844 2.8270
7 2330 1.0240 0 2 4 6 8

Number of processors

0

0.5

1

1.5

2

2.5

3

3.5

4

Sc
al

e−
up

9383 reflections, P422 :

Processors Wallclock Scale-up
1 8421 1.0
2 4733 1.7792
3 3464 2.4310
4 2723 3.0925
5 2315 3.6375
6 2021 4.1667
7 1792 4.6992
8 1644 5.1222
9 1516 5.5547

10 1466 5.7442
12 1553 5.4224

0 5 10
Number of processors

0

1

2

3

4

5

6

Sc
al

e−
up

3

3 Determining the ’best’ number of processors

To determine the best number of processors for your problem :

* Run the program on a stand-alone machine using the automatic mode and stop it
after in starts the actual minimisation (as described in the program’s
documentation). The program will create a file named ’Qs_auto.in’ in its current
directory.

* Copy the files Qs_auto.in, data.hkl and model.pdb (or model1.pdb, model2.pdb, etc)
to your area on the cluster. Edit the file Qs_auto.in and change the lines saying

CYCLES 5
STEPS 10000000

to

CYCLES 1
STEPS 200000

(the actual number of steps you will find in Qs_auto.in depends on the number of
molecules per asymmetric unit and may be different from the one shown above).

* Prepare a file with the name, say, ’Qs_lam.sh’ containing the following :

#!/bin/bash
#
The first of the lines that follow (the one saying "#$ -pe rack1 12")
defines two things :
1. The number of processors to use (12 for this example)
2. The queue (’parallel environment’) that the job will run on. On
’rack1’ you can use up to 76 CPUs concurrently, with ’rack2’ 72.
This separation in two queues is necessary due to network topology.

#$ -pe rack1 12
#$ -j y -o Qs.LOG
#$ -cwd

#
The line that follows defines the current working directory
#
cd /home/bmbnmg/last

#
The actual MPI call to run the parallel version of Qs
#
/usr/local/lam-pgi_5.1/bin/mpirun -np $NSLOTS /fbs/software/Qs/Qs_MPI Qs_auto.in

4

* Create directories with names like 1proc/ 2proc/ 4proc/ etc and copy in each one
of them the Qs_auto.in, data.hkl, model.pdb and Qs_lam.sh files.

* Successively enter each of these directories, edit the Qs_lam.sh file, change the
number of processors to be used (e.g. make it 4 for the file located in the 4proc/
directory), change the directory name, and submit a job with ’qsub Qs_lam.sh’.

* After the jobs finish, find the wallclock time recorded for each of the runs. This
is written out by the program after each minimisation finishes (do a tail -50 Qs.LOG
and you should see it). Error messages of the type "FFTW failed to read the wisdom
file ..." can safely be ignored.

* Decide how many processors per minimisation you will use.

4 Production runs

* Prepare directories like minim1/ minim2/ ... minim5/ and copy the Qs_auto.in,
data.hkl, model.pdb and Qs_lam.sh files in them.

* Edit the Qs_auto.in file, change the number of steps to its original value (say,
10,000,000), keep the number of cycles to the value of 1, find the line saying
’SEED 147579’ and change it to a different (integer) number. The values for SEED
should be different for each of your minimisations, otherwise you will be
performing a large number of identical minimisations.

* Edit the Qs_lam.sh file, define the number of processors to be equal to the ’best’
you have already determined and change the working directory path name.

* Submit the jobs.

Good luck,
NMG, September 2004

5

	Running Qs on the FBS GNU/Linux cluster
	'Best' number of processors : what to expect
	Determining the 'best' number of processors
	Production runs

